Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Atmospheric escape shapes exoplanet evolution and star–planet interactions, with HeI10830 Å absorption serving as a key tracer of mass loss in hot gas giants. However, transit depths vary significantly across observed systems for reasons that remain poorly understood. HD209458b, the archetypal hot-Jupiter, exhibits relatively weak HeI10830 Å and Hαabsorption, which has been interpreted as evidence for a high H/He ratio (98/2), possibly due to diffusive separation. To investigate this possibility and other processes that control these transit depths, we reassess excitation and de-excitation rates for metastable helium and explore the impact of diffusion processes, stellar activity, and tidal forces on the upper atmosphere and transit depths using a model framework spanning the whole atmosphere. Our model reproduces the observed HeItransit depth and Hαupper limit, showing strong diffusive separation. We match the observations assuming a photoelectron efficiency of 20%–40%, depending on the composition of the atmosphere, corresponding to mass-loss rates of 1.9–3 × 1010g s−1. We find that the HeI10830 Å transit depth is sensitive to both stellar activity and diffusion processes, while Hαis largely unaffected due to its strong dependence on Lyαexcitation. These differences may help explain the system-to-system scatter seen in population-level studies of the HeIline. While HeIdata alone may not tightly constrain mass-loss rates or temperatures, they do confirm atmospheric escape and help narrow the viable parameter space when interpreted with physically motivated models. Simultaneous observations of HeI, Hα, and stellar activity indicators provide powerful constraints on upper atmosphere dynamics and composition, even in the absence of full transmission spectra.more » « lessFree, publicly-accessible full text available August 5, 2026
-
Temporal delays extracted from photoionization phases are currently determined with attosecond resolution by using interferometric methods. Such methods require special care when photoionization occurs near Feshbach resonances due to the interference between direct ionization and autoionization. Although theory can accurately handle these interferences in atoms, in molecules, it has to face an additional, so far insurmountable problem: Autoionization is slow, and nuclei move substantially while it happens, i.e., electronic and nuclear motions are coupled. Here, we present a theoretical framework to account for this effect and apply it to evaluate time-resolved and vibrationally resolved photoelectron spectra and photoionization phases of N2irradiated by a combination of an extreme ultraviolet (XUV) attosecond pulse train and an infrared pulse. We show that Feshbach resonances lead to unusual non–Franck-Condon vibrational progressions and to ionization phases that strongly vary with photoelectron energy irrespective of the vibrational state of the remaining molecular cation.more » « less
-
Free-electron lasers (FELs) are the world's most brilliant light sources with rapidly evolving technological capabilities in terms of ultrabright and ultrashort pulses over a large range of photon energies. Their revolutionary and innovative developments have opened new fields of science regarding nonlinear light-matter interaction, the investigation of ultrafast processes from specific observer sites, and approaches to imaging matter with atomic resolution. A core aspect of FEL science is the study of isolated and prototypical systems in the gas phase with the possibility of addressing well-defined electronic transitions or particular atomic sites in molecules. Notably for polarization-controlled short-wavelength FELs, the gas phase offers new avenues for investigations of nonlinear and ultrafast phenomena in spin-orientated systems, for decoding the function of the chiral building blocks of life as well as steering reactions and particle emission dynamics in otherwise inaccessible ways. This roadmap comprises descriptions of technological capabilities of facilities worldwide, innovative diagnostics and instrumentation, as well as recent scientific highlights, novel methodology, and mathematical modeling. The experimental and theoretical landscape of using polarization controllable FELs for dichroic light-matter interaction in the gas phase will be discussed and comprehensively outlined to stimulate and strengthen global collaborative efforts of all disciplines. Published by the American Physical Society2025more » « less
An official website of the United States government
